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We introduce a solid-on-solid lattice model for growth with conditional evaporation. A measure of finite size
effects is obtained by observing the time invariance of distribution of local height fluctuations. The model
parameters are chosen so that the change in the distribution in time is minimum. On a one-dimensional
substrate the results obtained from the model for the roughness exponent � from three different methods are
same as predicted for the Kardar-Parisi-Zhang equation. One of the unique features of the model is that � as
obtained from the structure factor S�k , t� for the one-dimensional substrate growth exactly matches the pre-
dicted value of 0.5 within statistical errors. The model can be defined in any dimensions. We have obtained
results for this model on two- and three-dimensional substrates.
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The Kardar-Parisi-Zhang �KPZ� equation �1� is one of the
most studied stochastic equations in the field of growth:

�h

�t
= �0�

2h + ���h�2 + � . �1�

Here, h�r , t� is the height function, � is the coupling param-
eter, and ��r , t� is Gaussian noise with the correlation
���r , t���r� , t���=��r−r� , t− t��. First term is a linear term
�2� referred to as the Edward-Wilkinson �EW� term. Appli-
cations and uses of the KPZ equation have been well dem-
onstrated �3�. In particular its use in understanding growth
phenomena has led to vigorous activities in the development
of theoretical methods �4,5�, lattice models �6–8�, and nu-
merical methods �9� built around Eq. �1�. The critical expo-
nents in 1+1 dimensions are exactly obtainable �10�. How-
ever, in all higher dimensions the determination of these
exponents has been a difficult task. It is well known that this
equation shows phase transitions in dimensions higher than
its critical dimension of 2+1 �10� as a function of its cou-
pling parameter. For the weak coupling case the coupling
constant renormalizes to zero, leading to a linear equation.
For the strong coupling case, the perturbation approach fails
and other methods are required. However, obtaining exact
values for the exponents has never been possible although
the ranges in which exact values are expected to fall are
evident from the available references �4–9�.

Various lattice models have been devised �6–8� that are
known to belong to the KPZ universality class in the
asymptotic region. Most of the models suffer from finite size
effects arising from the cutoff length a and the substrate size
L. One of the tests to probe the presence of finite size effects
is to determine the growth exponents by different methods
such as height-height �h-h� correlations, structure factor
S�k , t�= �h�k , t�h�−k , t��, saturated widths Wsat, etc. For any
given lattice model, the values obtainable from these meth-
ods can be statistically different. Since all these models are
expected to converge asymptotically to KPZ behavior, the
apparent mismatch of the exponent values from different
methods will be due to the finite size effects. On the other
hand, if a model gives the same exponents within statistical

errors, it is expected to be free of finite size effects. In the
following we propose a model that we believe to belong to
the KPZ universality class and, in 1+1 dimensions, it pro-
vides the values of the exponent � the same within the sta-
tistical error, using three different methods of determination.
This value also compares well with the exactly known value
in 1+1 dimensions, 0.5.

We describe the model below and the changes therein for
2+1 and 3+1 dimensions. A site is chosen randomly, and the
height at the site is increased by unity, signaling random
deposition on the substrate. The deposited atom is condition-
ally accomodated, otherwise evaporated. In 1+1 dimensions
the deposited atom is accommodated if both its neighbors
have at least the same height as the deposited one. Other-
wise, the largest of the height differences at the site i and the
nearest-neighboring sites, sd=max�hi−hj�, j= i+1, i−1, is
obtained and accommodation is allowed according to the

probability factor e−sd
2/�2�2�. Thus sd is the largest local step.

The choice of � depends upon the behavior of the model for
the given value of �. We choose the value of � that leads to
minimum variation in the local height fluctuations. The
model with such a � is expected to be least affected by the
finite size effects �11�. It has been shown in Ref. �11� that a
measure of finite size effects for a given lattice model can be
obtained from the distribution of local height fluctuations.
In this method, we define the local height (hi�t�)local

=hi�t�− �hi−1�t�+hi+1�t�� /2 with respect to the local reference
as the average of nearest-neighbor heights. Similarly we
measure (hi�t+�t�)local where �t	w�t�. w�t� is the width of
the interface at t, and the inequality ensures that the differ-
ence between local heights measured at t and t+�t is
uncorrelated. Thus we measure the distribution of uncorre-
lated fluctuations �h�t�local from the difference �h�t�local

= (hi�t�)local− (hi�t+�t�)local. Figure 1 shows such a distribu-
tion for �=1.7. Another distribution is obtained at later time
and compared with the earlier one. In our case we have ob-
tained distributions at t=500 monolayers �ML� and
t=5000 ML for comparison with �t=100 ML. Since the
counts at �h�t�local=0 are largest in the distribution, the sta-
tistical error is minimum for zero fluctuation. We therefore
use the parameter P0=100��I500− I5000� / I500�, where It is the
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count at �h�t�local=0, to measure the time invariance of the
distribution of �h�t�local in 1+1 and 2+1 dimensions. In
3+1 dimensions, �t and times for comparison are smaller
due to the large computation times involved. Ideally P0
should be zero. In the present context we look for a mini-
mum value of P0 as a function of �. The ratios P0 are ob-
tained by averaging over large enough runs so that the values
of P0 are statistically discriminated for different values of �.
It has been shown in Ref. �11� that this method is useful in
identifying the presence of finite size effects for any lattice
model belonging to KPZ or EW universality. Figure 2 shows
the variation of P0 with � for the model described. We have
measured P0 for the model with different � values on a sub-
strate of length L=40 000. As can be seen, the minimum
occurs at �=1.7. We have therefore used this value in 1+1
dimensions. For other values of � we found that the value of
� as obtained from the structure factor deviates from 0.5 and
the linear range is also reduced on the log-log plot. This
confirms the effectiveness of the method for determining fi-
nite size effects �11�.

In 2+1 dimensions the deposited atom is accommodated
if three or more nearest neighbors have at least the same
height as its own. If this condition is relaxed to a smaller
number of in-plane neighbors, a crossover due to the EW
region is obtained. The crossover is negligible when direct
accommodation with three or four in-plane neighbors is
allowed. For depositions at the site with fewer than three
in-plane neighbors, the accommodation is decided from
the largest of the four steps around the site using the expo-

nential probability factor e−sd
2/�2�2�. In 2+1 dimensions

we have observed that �=2.5 shows a minimum P0
=0.002% ±0.0015%. The substrate size is L=400.

In 3+1 dimensions the deposited atom is accommodated
if five or six nearest neighbors have at least the same
height as the deposited atom. We have used �=4.5 in the
simulations since this value gives a minimum P0
=0.0012% ±0.001%. The �t=20 ML and the distributions
are compared for the times 50 ML and 500 ML for the sub-
strate size of L=100.

We present results obtained from �h-h� correlations, Wsat
as a function of L, and the structure factor. The �h-h� corre-
lation is

G�x,t� =
1

N
�
x�

�h�x + x�,t� − h�x�,t��2 = x2�f� x


�t�
	 , �2�

where the correlation length 
�t�
 t1/z. In the limit x→0,
f →1.

The time exponent can be obtained by measuring the
width over a substrate of length L as

w2�L,t� =
1

N
�

x

�h�x,t� − h̄�t��2 = L2�g� L


�t�
	 . �3�

Here h̄�t� is the average height at time t. It can be shown that
�10� for times t�L, g(L /
�t�)→const, thus wsat�L2�. For
t
L, w2�t�� t2�.

The structure factor S�k , t� is measured as

FIG. 1. Plot of distribution of �h�t�local for the
�1+1�-dimensional model described in the text on a semilogarith-
mic scale. The distribution is for t=5000 ML, with �=1.7. The
distribution is obtained by collecting the data over 3000 runs.

FIG. 2. Plot of P0 in % as a function of parameter � for the
model in 1+1 dimensions.

FIG. 3. Plot of G�x , t� vs x on a log-log scale. The substrate size
L=80 000, and the number of monolayers grown is 5�105.
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S�k,t� = �h�k,t�h�− k,t�� , �4�

where h�k , t�= �1/N��x�h�x , t�− h̄�x , t��eik·x.
Figures 3, 4, and 5 summarize the results obtained for the

model in 1+1 dimensions. Figure 3 shows the log-log plot of
G�x , t� vs x. The straight line is fitted between x=8 and 500.
The slope gives �=0.504±0.002. Figure 4 shows the plot of
Wsat vs L for 1+1 dimensions. The least squares fit to the
points gives �=0.502±0.005.

Figure 5 shows the log-log plot of �h�k , t�h�−k , t�� vs k.
The straight line fit is between k=0.03 and 1.25. The slope
near k=� tends to zero �12�. The slope is 2.003±0.021. This
gives �10� �=0.500±0.021. Earlier, in Ref. �13� for the etch-
ing model, a slope 1.92±0.02 was obtained in the range of
k=0.05–0.1, resulting in �=0.46. This was considered to be
one of the best values obtained for the existing lattice models
by this method. Clearly the present model provides a better
value. In the same reference, �=0.496 is obtained from Wsat.
The apparent difference in the two � values indicates the

presence of finite size effects for the etching model. In the
present model, the slope is unaffected at smaller k values. We
have tested it up to k=0.005.

The above results show that the proposed model has mini-
mal finite size effects. It further confirms the method intro-
duced in Ref. �11� for the determination of finite size effects
in a lattice model. We have applied this method in 2+1 and
3+1 dimensions to choose the model parameters correspond-
ing to the minimal finite size effects.

In Fig. 6, we display the results of Wsat vs L in 2+1
dimensions. The solid squares are the values calculated from
the simulation results. The corresponding fit gives
�=0.357±0.005. Figure 7 shows the log-log plot of G�x , t�
vs x. From its slope, �=0.355±0.001. The line is fitted be-
tween x=2 and 50. Thus both methods give results matching
within the statistical margin.

In Fig. 6, we have also plotted the results of Wsat vs L for
the model in 3+1 dimensions. It gives �=0.289±0.005. The
� values obtained from these models in 2+1 and 3+1 di-
mensions are very close to those predicted in Ref. �14�. In

FIG. 4. Plot of Wsat vs L on a log-log scale for the model in
1+1 dimensions.

FIG. 5. Plot of S�k , t� vs k on a log-log scale for the model in
1+1 dimensions. The points are averaged over the substrate lengths
of L=800, 900, 1000, 1100, 1200, 1300, 1350. k varies from � /100
to �.

FIG. 6. Plot of Wsat vs L on a log-log scale for the model in
2+1 dimensions �solid squares� and for the model in 3+1 dimen-
sions �solid circles�.

FIG. 7. Plot of G�x , t� vs x on a log-log scale for the model in
2+1 dimensions. The substrate size is L=800, and the number of
monolayers grown is 20 000.
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this reference �=0.357 02 for 2+1 dimensions and 0.281 25
for 3+1 dimensions.

We have also measured the � values for these models
from the log-log plots of w2�t� vs t. We obtain
�=0.332±0.001, 0.221±0.002, and 0.168±0.003 for 1+1,
2+1, and 3+1 dimensions, respectively. These values are
consistent with the universal relation �+z=2 for the KPZ
equation �10�.

In conclusion, we have developed a lattice model belong-
ing to the KPZ universality class with minimum finite size
effects. That the finite size effects are minimum is evident
from the results obtained. The � values using Wsat vs L,

G�x , t� vs x, and S�k , t� vs k plots are equal within the statis-
tical margin in 1+1 dimensions. The simulation values are
very close to the exact value of �, 0.5. Measurement involv-
ing local height fluctuations is successfully used in determin-
ing the finite size effects in lattice models. The models with
minimum finite size effects are expected to lead to better
accuracy in determining the exact exponents for KPZ growth
in higher dimensions. In 2+1 dimensions, we have obtained
values close to �=0.36 while in 3+1 dimensions it is around
0.29. Both these values are close to the earlier prediction in
Ref. �14�.
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